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Effects of distant boundaries on pattern forming instabilities
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The distinction between convective and absolute instability for an instability in the form of a traveling wave
becomes important when the transition takes place in a finite domain. When the instability takes the form of
waves traveling in one direction only, or the boundaries are perfectly absorbing, then the absolute stability
criterion is the correct one for global modes to exist. When waves can travel equally easily in either direction,
on the other hand, the convective criterion is the correct one. In this paper we show how the two results are
linked by investigating a model system in which both left and right traveling waves can be unstable, but in
which there is no symmetry. Whether the absolute instability boundary or some other boundary is the appro-
priate one depends on the degree of asymmetry. Both linear and nonlinear aspects of the problem are discussed.
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[. INTRODUCTION in one direction only. The evolution of these waves has been
intensively studied in a finite geometfy,5], and it is found

Many theoretical analyses of pattern-forming instabilitiesthat while the onset of waves occurs simultaneously in an
of a uniform background make the assumption that the instanfinite or a semi-infinite layer, when the layer is of finite
bility takes place in a domain of infinite lateral extent. ThenéXtent the onset of instability is delayed by an amount of
the linearized perturbation equations describing the instabilorder unity, even when the size of the layer tends to infinity.
ity are separable in the lateral variables, and the analysis ishis is quite different from the binary fluid problem, and
thereby much simplified. This approach only makes sense, deads to the interesting question of how the transition be-
course, if the limits of the instability properties in a very tween the two situations takes place. A natural way to inves-
large domain tend smoothly to those for an infinite domaintigate the problem is to utilize the coupled Landau-Ginzburg
In many cases such an assumption is well justified; for exequations of Crosgl], simplifying by assuming real coeffi-
ample, Rayleigh-Benard convection in a large box of lateraFients (qualitatively similar effects occur when the coeffi-
extentL can be shown to appear at a value of the temperacients are complex However, we shall generalize the equa-
ture difference that differs from the value in the infinite layer tions” symmetry by removing the left-right symmetry that
by an amounO(L ~?). The convection problem is particu- links the coefficients in the two equations. Thus we write
larly simple, as it is an example of a steady-state bifurcation.
When the instability is of Hopf or oscillatory type, such as A= piA+ CAX T MiAxx— A= 11 B%A, (1)
the onset of convection in binary mixtures, there are two
possible further complications: first, there is a nonlinear se-

lection effect in an infinite layer, which may favor either \yhere A(X,T), B(X,T) are the amplitudes of the wave en-
traveling or standing waves at onset; and second, there is\@|gpes.c; are the group velocities of the packets, assumed
possible distinction between convective instability, in whichyggitive, so that the two types of wave propagate in opposite
a traveling wave pulse, with growing energy, is transient ajyjrections. The coefficients @ andB? have been scaled to
any particular location, and absolute instability, in which pe — 1 (supposing both to be negativ@he equations are to
there is growth at all points. It seems likely that both these,s golved in G=X<L. with the boundary conditionA(0)
effects will depend on lateral boundaries, even if they are_ A(L)=—r,B’(L), B(0)=r,A’(0), andB(L)=0. This
distant. Cross and co-workefa—3] carried out extensive gimple model is useful, as it illustrates well the transition
analyses of model problems describing the onset of binary,m convective to absolute instabilitgee, e.g., Ref6)). It

fluid convection in a finite container, to see what can occurg ffices to demonstrate the effects of asymmetry by letting

They found that, while there is an int_eresting variety (_)f non-,, = .. and c;#c,, and so in general we shall take,
linear effects, the linear onset of motion occurs generically aﬁ

X o . =Ny, v1=v,, andr,;=r,, and drop the subscripts.
a value of the instability parametés.g., vertical temperature We analyze the system first as a linear eigenvalue prob-
gradienj that is the same in the limit of large as in the

AP lem, and then by conducting numerical simulations in the
infinite case.

. . . nonlinear regime. Our focus throughout will be to identify
The binary-fluid problem discussed above has the featurg,e circumstances in which the boundary conditionsXat
that waves traveling to left and right can be excited Wlth=0 L remain important even ds—o .

equal ease, and indeed are related by the obvious reflection
symmetry even at finite amplitude. There are pattern-forming

instabilities, however, that do not possess this symmetry. Of
particular interest is the bifurcation leading to dynamo waves We now drop the nonlinear terms in Eq$) and(2), and
in the solar convection zone. Here the unstable waves travébr convenience writgu,;=u—26 and u,= u, where5=0.

Br=wyB—C,By+ N Bxx— B3~ 1,A%B, 2
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Then we may seek steady solutions foandB in the forms 040 —r— —r— —r —

A= ae®*2sinp X, B=pe%2 -7 X ginp,(L - X),

)

where

pa=(u—28)IN—(c1/2\)? and p3=u/\—(Cy/2\)2.
4

These functions satisfy half of the boundary conditions. I e
The other conditions give the dispersion relation He L ' L->infinity

sin(psL)sin(p,L) =r2p;p,e(cr*c2t/2, 5

When r=0 the equations are decoupled, and then the
critical value ofu coincides with the onset of absolute insta-
bility for each of the separate wavedlhis situation was
thoroughly discussed by Tobias, Proctor, and Knobloch
[5,6].) However, it can be seen from the last equation that the 1 ]
caser =0 is singular in the limiL —o~. Whenr #0, the way 010 .
u approaches the limit depends on the sizé athrough the g 1
signs ofp? andp3 for largelL.

Suppose first thap?,p3<0, so letqi=—p3 and g5= ¢
—p%. The dispersion relation becomes I

sinh(q;L)sinh(g,L)=r2q,q et 2L/2\ (6) oool o 0w b ]

Now, asL—o sinh@,L)—3e%", and so
FIG. 1. u. vs 6 for L=10, 20, 30, 40, and 50 witb;=c,=A\
q.L+g,L=~In(4r?)+1In(q,0,) + (c1+Cp)LI2N -1

m(Cl‘f‘Cz)L/Z)\ as L—ow, (7) |n[sin(p2|_)]+In[sinl..(qll_)]:In(r2)+|n(qlp2)

This equation, together with E@5), can be used to show +(Ci+CL/2n. (1)
1 2 .

that

au= e/ +48l(cy+ )], @ MU ato
Ccit+cyL/2a~q L+ In[si L)]. 12
U= 2[Co/N—45/(C1+Cy)] ©) (c1tcy) f [sin(poL)] (12
So if we suppose thael(c1*®/2 ~all<q je. g;>(c;

as long asd<(cq+C,)Co/AN=6,. +¢,)/2\, then

So if §<6;, then the critical value of. (where the bi-

furcation takes plade (u.) as L—® is u.=28c,/(cy po~m/L andsou=A(Cy/2\)2+\(m/L)%. (13

+¢,) — 4N 8%/(cy+C,p) %+ O(L), using Eqs(9) and(4). This
is a system where the two waves are strongly interactinglt can be seen thag,>(c,+c,)/2\ corresponds ta5> &,
resulting in the bifurcation taking place at a valuewbelow  +\/2(w/L)? which is what we assumed, lf is sufficiently
the absolute instability threshold for an infinite layer.df large. Since sinfgl)==*sinh@L*inw7) there are many
=0, the bifurcation point is identical with the onset of con- hearby complex eigenvalue@nd associated eigenmoges
vective instability, though the eigensolutions are not ex-With imaginary partO(L~') and real partO(L~?), when
tended waves but wall modes. This is the scenario explored>1. Though this does not affect the formal bifurcation
by Cross and Kuo[3] and Dangelmayr, Knobloch, and structure at finitd, it suggests that weakly nonlinear theory
Wegelin[4]. (based on one unstable modeill be inapplicable except
When 6> &, the bifurcation changes its character, sincevery close to the bifurcation poirisee Ref[6]). Note also
one or the other op? or p3 must now be positivéno bal-  that the limits attained in both cases are independent, of
ance is possible when both are positive in the limit of largeProviding thatr #0.
L). There are two possibilities, depending on the relative Thus for 6> &, MCZA(CZ/Z)\)Z—" N(m/L)? as L—o.
magnitudes ot; andc,. If p§<0 and p§>0 then we must This is the same value as if thejre were no coupling betwe_en
have 5<(c5—c3)/8\, but this is impossible sincé> 5, . the two envelopes; the bifurcation occurs at the absolute in-
Thus we must havp§<0 andp§>0, and hence stability point asL — o, so in this case the larde limit and
the semi-infinite case behave differently. This is explained in
sinh(q;L)sin(p,L)=r2q,p,e(c1t 2L/ (10) Ref. [7]. The numerical experiments support this claim; in
Fig. 1,c;=c,=\=1, and the change in behavior therefore
SO takes place ab=3, as is seen.
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Ill. NONLINEAR SIMULATIONS interior of the box are almost independentXf Pattern se-

lection in that case may be expected to be similar to that for

We now restore the nonlinear terms in E¢f). and (2), the corresponding ordinary differential equation system

settingv,= v,= v for simplicity. We also simplify by taking
c1=C,=1 andA=1. Thus we solve Ar=(u—26)A— A*— yB2A, (16
Ar=(—28)A+ A+ Ayx—AS— vB2A, (14
Br=uB—B%-vAZB. (17)
Br=uB—By+Byyx— B3—vA?B, (15
This equation is in standard form, and been analyzed exten-
where now we seek to understand the effects of the nonlineaively by many authors. The main conclusions are that, when
coupling represented by in the asymmetric case. Clearly || is small, so that the nonlinear coupling is weak, then for
the selection of a pattern is the outcome of a competitiorsufficiently largex mixed solutions are stablgéhough if §
between the linear and nonlinear coupling terms. It may be>0 B-modes A= 0) are stable for sufficiently small]. If »
seen, wheru is sufficiently large, that the solutions in the is sufficiently large, then the single mode solutions are
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stable. This case has been investigated §er0 in Refs. fluence the onset and form of instabilities of traveling wave
[1,3], so we do not discuss it here. Of more interest for ourtype. In it, we have clarified the connection between the situ-
purposes is the situation for which the value d®xceeds ation in which the instability can only travel in one direction,
S:, but the nonlinear coupling favors mixed modes. In thisin which case a global mode can exist only above the abso-
caseB bifurcates first; then, when — w is of order unity B lute instability boundary, and the fully symmetric case for
fills the box, andA can be of order due to the boundary which any coupling through the boundaries leads to the con-
coupling terms. Only when.—248 exceeds;+vB2 can a  vective instability criterion, which is the correct one for long
large amplitude solution foA appear, independent of In  boxes. In the fully nonlinear regime the effects of differences
the intermediate convective type regime the solutionZor in the growth rate diminish, and the solutions resemble the
can be of order unity, but the spatial extent of the regionsymmetric case.
scales with|Inr|. Plots of A andB for representative values
of the parameters are shown in Fig. 2.
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