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Effects of distant boundaries on pattern forming instabilities

Patrick J. Fox and Michael R. E. Proctor
DAMTP, University of Cambridge, Silver Street, Cambridge CB3 9EW, United Kingdom

~Received 23 June 1997!

The distinction between convective and absolute instability for an instability in the form of a traveling wave
becomes important when the transition takes place in a finite domain. When the instability takes the form of
waves traveling in one direction only, or the boundaries are perfectly absorbing, then the absolute stability
criterion is the correct one for global modes to exist. When waves can travel equally easily in either direction,
on the other hand, the convective criterion is the correct one. In this paper we show how the two results are
linked by investigating a model system in which both left and right traveling waves can be unstable, but in
which there is no symmetry. Whether the absolute instability boundary or some other boundary is the appro-
priate one depends on the degree of asymmetry. Both linear and nonlinear aspects of the problem are discussed.
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I. INTRODUCTION

Many theoretical analyses of pattern-forming instabilit
of a uniform background make the assumption that the in
bility takes place in a domain of infinite lateral extent. Th
the linearized perturbation equations describing the insta
ity are separable in the lateral variables, and the analys
thereby much simplified. This approach only makes sense
course, if the limits of the instability properties in a ve
large domain tend smoothly to those for an infinite doma
In many cases such an assumption is well justified; for
ample, Rayleigh-Benard convection in a large box of late
extentL can be shown to appear at a value of the tempe
ture difference that differs from the value in the infinite lay
by an amountO(L22). The convection problem is particu
larly simple, as it is an example of a steady-state bifurcat
When the instability is of Hopf or oscillatory type, such
the onset of convection in binary mixtures, there are t
possible further complications: first, there is a nonlinear
lection effect in an infinite layer, which may favor eithe
traveling or standing waves at onset; and second, there
possible distinction between convective instability, in whi
a traveling wave pulse, with growing energy, is transient
any particular location, and absolute instability, in whi
there is growth at all points. It seems likely that both the
effects will depend on lateral boundaries, even if they
distant. Cross and co-workers@1–3# carried out extensive
analyses of model problems describing the onset of bin
fluid convection in a finite container, to see what can occ
They found that, while there is an interesting variety of no
linear effects, the linear onset of motion occurs genericall
a value of the instability parameter~e.g., vertical temperature
gradient! that is the same in the limit of largeL as in the
infinite case.

The binary-fluid problem discussed above has the fea
that waves traveling to left and right can be excited w
equal ease, and indeed are related by the obvious refle
symmetry even at finite amplitude. There are pattern-form
instabilities, however, that do not possess this symmetry
particular interest is the bifurcation leading to dynamo wa
in the solar convection zone. Here the unstable waves tr
571063-651X/98/57~1!/491~4!/$15.00
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in one direction only. The evolution of these waves has b
intensively studied in a finite geometry@7,5#, and it is found
that while the onset of waves occurs simultaneously in
infinite or a semi-infinite layer, when the layer is of finit
extent the onset of instability is delayed by an amount
order unity, even when the size of the layer tends to infin
This is quite different from the binary fluid problem, an
leads to the interesting question of how the transition
tween the two situations takes place. A natural way to inv
tigate the problem is to utilize the coupled Landau-Ginzbu
equations of Cross@1#, simplifying by assuming real coeffi
cients ~qualitatively similar effects occur when the coeffi
cients are complex!. However, we shall generalize the equ
tions’ symmetry by removing the left-right symmetry th
links the coefficients in the two equations. Thus we write

AT5m1A1c1AX1l1AXX2A32n1B2A, ~1!

BT5m2B2c2BX1l2BXX2B32n2A2B, ~2!

whereA(X,T), B(X,T) are the amplitudes of the wave en
velopes.ci are the group velocities of the packets, assum
positive, so that the two types of wave propagate in oppo
directions. The coefficients ofA3 andB3 have been scaled to
be21 ~supposing both to be negative!. The equations are to
be solved in 0<X<L, with the boundary conditionsA(0)
50, A(L)52r 2B8(L), B(0)5r 1A8(0), andB(L)50. This
simple model is useful, as it illustrates well the transiti
from convective to absolute instability~see, e.g., Ref.@6#!. It
suffices to demonstrate the effects of asymmetry by lett
m1Þm2 and c1Þc2, and so in general we shall takel1
5l2, n15n2, andr 15r 2, and drop the subscripts.

We analyze the system first as a linear eigenvalue pr
lem, and then by conducting numerical simulations in t
nonlinear regime. Our focus throughout will be to identi
the circumstances in which the boundary conditions aX
50, L remain important even asL→` .

II. LINEAR ANALYSIS

We now drop the nonlinear terms in Eqs.~1! and~2!, and
for convenience writem15m22d andm25m, whered>0.
491 © 1998 The American Physical Society
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Then we may seek steady solutions forA andB in the forms

A5aec1X/2lsinp1X, B5bec2~L2X!/2lsinp2~L2X!,
~3!

where

p1
25~m22d!/l2~c1/2l!2 and p2

25m/l2~c2/2l!2.
~4!

These functions satisfy half of the boundary conditio
The other conditions give the dispersion relation

sin~p1L !sin~p2L !5r 2p1p2e~c11c2!L/2l. ~5!

When r 50 the equations are decoupled, and then
critical value ofm coincides with the onset of absolute inst
bility for each of the separate waves.~This situation was
thoroughly discussed by Tobias, Proctor, and Knoblo
@5,6#.! However, it can be seen from the last equation that
caser 50 is singular in the limitL→`. WhenrÞ0, the way
m approaches the limit depends on the size ofd, through the
signs ofp1

2 andp2
2 for largeL.

Suppose first thatp1
2 ,p2

2,0, so let q1
252p1

2 and q2
25

2p2
2. The dispersion relation becomes

sinh~q1L !sinh~q2L !5r 2q1q2e~c11c2!L/2l. ~6!

Now, asL→` sinh(q1L)→1
2e

q1L, and so

q1L1q2L' ln~4r 2!1 ln~q1q2!1~c11c2!L/2l

'~c11c2!L/2l as L→`. ~7!

This equation, together with Eq.~5!, can be used to show
that

q15 1
2 @c1 /l14d/~c11c2!#, ~8!

q25 1
2 @c2 /l24d/~c11c2!# ~9!

as long asd,(c11c2)c2/4l[dc .
So if d,dc , then the critical value ofm ~where the bi-

furcation takes place! (mc) as L→` is mc52dc2 /(c1
1c2)24ld2/(c11c2)21O(L), using Eqs.~9! and~4!. This
is a system where the two waves are strongly interact
resulting in the bifurcation taking place at a value ofm below
the absolute instability threshold for an infinite layer. Ifd
50, the bifurcation point is identical with the onset of co
vective instability, though the eigensolutions are not e
tended waves but wall modes. This is the scenario explo
by Cross and Kuo@3# and Dangelmayr, Knobloch, an
Wegelin @4#.

Whend.dc , the bifurcation changes its character, sin
one or the other ofp1

2 or p2
2 must now be positive~no bal-

ance is possible when both are positive in the limit of lar
L). There are two possibilities, depending on the relat
magnitudes ofc1 andc2. If p2

2,0 andp1
2.0 then we must

have d,(c2
22c1

2)/8l, but this is impossible sinced.dc .
Thus we must havep1

2,0 andp2
2.0, and hence

sinh~q1L !sin~p2L !5r 2q1p2e~c11c2!L/2l ~10!

so
.

e

h
e

g,

-
d

e
e

ln@sin~p2L !#1 ln@sinh~q1L !#5 ln~r 2!1 ln~q1p2!

1~c11c2!L/2l. ~11!

Thus, asL→`,

~c11c2!L/2l'q1L1 ln@sin~p2L !#. ~12!

So if we suppose thate@(c11c2)/2l2q1#L!1, i.e., q1.(c1
1c2)/2l, then

p2'p/L and so m5l~c2/2l!21l~p/L !2. ~13!

It can be seen thatq1.(c11c2)/2l corresponds tod.dc
1l/2(p/L)2 which is what we assumed, ifL is sufficiently
large. Since sinh(qiL)56sinh(qiL6inp) there are many
nearby complex eigenvalues~and associated eigenmode!
with imaginary partO(L21) and real partO(L22), when
L@1. Though this does not affect the formal bifurcatio
structure at finiteL, it suggests that weakly nonlinear theo
~based on one unstable mode! will be inapplicable except
very close to the bifurcation point~see Ref.@6#!. Note also
that the limits attained in both cases are independent or ,
providing thatrÞ0.

Thus for d.dc , mc5l(c2/2l)21l(p/L)2 as L→`.
This is the same value as if there were no coupling betw
the two envelopes; the bifurcation occurs at the absolute
stability point asL→`, so in this case the largeL limit and
the semi-infinite case behave differently. This is explained
Ref. @7#. The numerical experiments support this claim;
Fig. 1, c15c25l51, and the change in behavior therefo
takes place atd5 1

2, as is seen.

FIG. 1. mc vs d for L510, 20, 30, 40, and 50 withc15c25l
51.
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FIG. 2. Graphs of nonlinear steady solution
for A ~dashed lines! andB ~full lines! for L520,
d50.75,n520.2 ~a!–~d!, n520.9 ~e!–~h!, and
~a! m50.3, ~b! m51.2, ~c! m51.4, ~d! m51.6,
~e! m50.3, ~f! m50.8, ~g! m50.9, and~h! m
51.0.
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III. NONLINEAR SIMULATIONS

We now restore the nonlinear terms in Eqs.~1! and ~2!,
settingn15n25n for simplicity. We also simplify by taking
c15c251 andl51. Thus we solve

AT5~m22d!A1AX1AXX2A32nB2A, ~14!

BT5mB2BX1BXX2B32nA2B, ~15!

where now we seek to understand the effects of the nonlin
coupling represented byn in the asymmetric case. Clearl
the selection of a pattern is the outcome of a competit
between the linear and nonlinear coupling terms. It may
seen, whenm is sufficiently large, that the solutions in th
ar

n
e

interior of the box are almost independent ofX. Pattern se-
lection in that case may be expected to be similar to that
the corresponding ordinary differential equation system

AT5~m22d!A2A32nB2A, ~16!

BT5mB2B32nA2B. ~17!

This equation is in standard form, and been analyzed ex
sively by many authors. The main conclusions are that, w
unu is small, so that the nonlinear coupling is weak, then
sufficiently largem mixed solutions are stable@though if d
.0 B-modes (A50) are stable for sufficiently smallm#. If n
is sufficiently large, then the single mode solutions a
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stable. This case has been investigated ford50 in Refs.
@1,3#, so we do not discuss it here. Of more interest for o
purposes is the situation for which the value ofd exceeds
dc , but the nonlinear coupling favors mixed modes. In t
caseB bifurcates first; then, whenm2mc is of order unity,B
fills the box, andA can be of orderr due to the boundary
coupling terms. Only whenm22d exceeds1

41nB2 can a
large amplitude solution forA appear, independent ofr . In
the intermediate convective type regime the solution forA
can be of order unity, but the spatial extent of the reg
scales withu lnr u. Plots ofA andB for representative value
of the parameters are shown in Fig. 2.

IV. DISCUSSION

This short paper has investigated the conditions un
which weak boundary coupling at distant boundaries can
s

s-
r

n

er
-

fluence the onset and form of instabilities of traveling wa
type. In it, we have clarified the connection between the s
ation in which the instability can only travel in one directio
in which case a global mode can exist only above the ab
lute instability boundary, and the fully symmetric case f
which any coupling through the boundaries leads to the c
vective instability criterion, which is the correct one for lon
boxes. In the fully nonlinear regime the effects of differenc
in the growth rate diminish, and the solutions resemble
symmetric case.
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